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IES302 2011/1 Part I.3 Dr.Prapun
Example 6.24. Medical Diagnostic: Because a new medical pro-
cedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The
probability that the test correctly identifies someone with the ill-
ness as positive is 0.99, and the probability that the test correctly
identifies someone without the illness as negative is 0.95. The in-
cidence of the illness in the general population is 0.0001. You take
the test, and the result is positive. What is the probability that
you have the illness? [12, Ex. 2-37]

Let D denote the event that you have the illness, and let TP
denote the event that the test signals positive.

Example 6.25. Bayesian networks are used on the Web sites of
high-technology manufacturers to allow customers to quickly di-
agnose problems with products. An oversimplified example is pre-
sented here.

A printer manufacturer obtained the following probabilities from
a database of test results. Printer failures are associated with three
types of problems: hardware, software, and other (such as connec-
tors), with probabilities 0.1, 0.6, and 0.3, respectively. The prob-
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ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F denote a printer failure.

6.2 Event-based Independence

Plenty of random things happen in the world all the time, most of
which have nothing to do with one another. If you toss a coin and
I roll a dice, the probability that you get heads is 1/2 regardless
of the outcome of my dice. Events that in this way are unrelated
to each other are called independent.

6.26. Sometimes our definition for independence above does not
agree with the everyday-language use of the word “independence”.
Hence, many authors use the term “statistically independence” to
distinguish it from other definitions.

Definition 6.27. Two events A, B are called (statistically) in-
dependent if

P (A ∩B) = P (A)P (B) (8)

• Notation: A |= B

• Read “A and B are independent” or “A is independent of B”

• We call (8) the multiplication rule for probabilities.

58



ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F denote a printer failure.

6.2 Event-based Independence

Plenty of random things happen in the world all the time, most of
which have nothing to do with one another. If you toss a coin and
I roll a dice, the probability that you get heads is 1/2 regardless
of the outcome of my dice. Events that in this way are unrelated
to each other are called independent.

6.26. Sometimes our definition for independence above does not
agree with the everyday-language use of the word “independence”.
Hence, many authors use the term “statistically independence” to
distinguish it from other definitions.

Definition 6.27. Two events A, B are called (statistically) in-
dependent if

P (A ∩B) = P (A)P (B) (8)

• Notation: A |= B

• Read “A and B are independent” or “A is independent of B”

• We call (8) the multiplication rule for probabilities.

58



• If two events are not independent, they are dependent. If
two events are dependent, the probability of one changes with
the knowledge of whether the other has occurred.

• In classical probability, this is equivalent to

|A ∩B||Ω| = |A||B|.

6.28. Intuition: Again, here is how you should think about inde-
pendent events: “If one event has occurred, the probability of the
other does not change.”

P (A|B) = P (A) and P (B|A) = P (B). (9)

In other words, “the unconditional and the conditional probabil-
ities are the same”. We can almost use (9) as the definitions for
independence. However, we use (8) instead because it also works
with events whose probabilities are zero. In fact, in 6.30, we show
how (9) can be used to define independence with extra condition
that deals with the case when zero probability is involved.

Example 6.29. (Slide) [24, Ex. 5.4] Which of the following pairs
of events are independent?

(a) The card is a club, and the card is black.

(b) The card is a king, and the card is black.

6.30. Two events A, B with positive probabilities are independent
if and only if P (B |A) = P (B), which is equivalent to P (A |B ) =
P (A).

When A and/or B has zero probability, A and B are automat-
ically independent.
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6.31. When A and B have nonzero probabilities, the following
statements are equivalent:

6.32. If A and B are independent events, then so are A and Bc,
Ac and B, and Ac and Bc. By interchanging the roles of A and
Ac and/or B and Bc, it follows that if any one of the four pairs is
independent, then so are the other three. [7, p.31]

In fact, the following four statements are equivalent:

A |= B, A |= Bc, Ac |= B, Ac |= Bc.

Example 6.33. If P (A|B) = 0.4, P (B) = 0.8, and P (A) = 0.5,
are the events A and B independent? [12]

6.34. Keep in mind that independent and disjoint are not
synonyms. In some contexts these words can have similar mean-
ings, but this is not the case in probability.

• If two events cannot occur at the same time (they are disjoint),
are they independent? At first you might think so. After all,
they have nothing to do with each other, right? Wrong! They
have a lot to do with each other. If one has occurred, we know
for certain that the other cannot occur. [16, p 12]

• To check whether A and B are disjoint, you only need to
look at the sets themselves and see whether they have shared
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element(s). This can be answered without knowing probabil-
ities.

To check whether A and B are independent, you need to look
at the probabilities P (A), P (B), and P (A ∩B).

• Reminder: If events A and B are disjoint, you calculate the
probability of the union A ∪ B by adding the probabilities
of A and B. For independent events A and B you calculate
the probability of the intersection A ∩ B by multiplying the
probabilities of A and B.

Example 6.35. Experiment of flipping a fair coin twice. Ω =
{HH,HT, TH, TT}. Define event A to be the event that the first
flip gives a H; that is A = {HH,HT}. Event B is the event that
the second flip gives a H; that is B = {HH,TH}. Note that even
though the events A and B are not disjoint, they are independent.

Example 6.36. Prosecutor’s fallacy : In 1999, a British jury
convicted Sally Clark of murdering two of her children who had
died suddenly at the ages of 11 and 8 weeks, respectively. A pedi-
atrician called in as an expert witness claimed that the chance of
having two cases of infant sudden death syndrome, or “cot deaths,”
in the same family was 1 in 73 million. There was no physical or
other evidence of murder, nor was there a motive. Most likely,
the jury was so impressed with the seemingly astronomical odds
against the incidents that they convicted. But where did the num-
ber come from? Data suggested that a baby born into a family
similar to the Clarks faced a 1 in 8,500 chance of dying a cot death.
Two cot deaths in the same family, it was argued, therefore had a
probability of (1/8, 500)2 which is roughly equal to 1/73,000.000.
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Did you spot the error? I hope you did. The computation
assumes that successive cot deaths in the same family are inde-
pendent events. This assumption is clearly questionable, and even
a person without any medical expertise might suspect that genetic
factors play a role. Indeed, it has been estimated that if there
is one cot death, the next child faces a much larger risk, perhaps
around 1/100. To find the probability of having two cot deaths in
the same family, we should thus use conditional probabilities and
arrive at the computation 1/8, 500×1/100, which equals l/850,000.
Now, this is still a small number and might not have made the ju-
rors judge differently. But what does the probability 1/850,000
have to do with Sallys guilt? Nothing! When her first child died,
it was certified to have been from natural causes and there was
no suspicion of foul play. The probability that it would happen
again without foul play was 1/100, and if that number had been
presented to the jury, Sally would not have had to spend three
years in jail before the verdict was finally overturned and the ex-
pert witness (certainly no expert in probability) found guilty of
“serious professional misconduct.”

You may still ask the question what the probability 1/100 has
to do with Sallys guilt. Is this the probability that she is inno-
cent? Not at all. That would mean that 99% of all mothers who
experience two cot deaths are murderers! The number 1/100 is
simply the probability of a second cot death, which only means
that among all families who experience one cot death, about 1%
will suffer through another. If probability arguments are used in
court cases, it is very important that all involved parties under-
stand some basic probability. In Sallys case, nobody did.

References: [11, 118–119] and [16, 22–23].

Definition 6.37. Three events A1, A2, A3 are independent if and
only if

P (A1 ∩ A2) = P (A1)P (A2)

P (A1 ∩ A3) = P (A1)P (A3)

P (A2 ∩ A3) = P (A2)P (A3)

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3)
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Remarks :

(a) When the first three equations hold, we say that the three
events are pairwise independent.

(b) We may use the term “mutually independence” to further
emphasize that we have “independence” instead of “pairwise
independence”.

Definition 6.38. The events A1, A2, . . . , An are independent if
and only if for any subcollection Ai1, Ai2, . . . , Aik,

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = P (Ai1)× P (Ai2)× · · · × P (Ain) .

• Note that part of the requirement is that

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An) .

Therefore, if someone tells us that the events A1, A2, . . . , An

are independent, then one of the properties that we can con-
clude is that

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1)× P (A2)× · · · × P (An) .

• Equivalently, this is the same as the requirement that

P

⋂
j∈J

Aj

 =
∏
j∈J

P (Aj) ∀J ⊂ [n] and |J | ≥ 2

• Note that the case when j = 1 automatically holds. The case
when j = 0 can be regard as the ∅ event case, which is also
trivially true.

6.3 Bernoulli Trials

Example 6.39. Consider the following random experiments

(a) Flip a coin 10 times. We are interested in the number of heads
obtained.
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(b) Of all bits transmitted through a digital transmission channel,
10% are received in error. We are interested in the number of
bits in error in the next five bits transmitted.

(c) A multiple-choice test contains 10 questions, each with four
choices, and you guess at each question. We are interested in
the number of questions answered correctly.

These examples illustrate that a general probability model that
includes these experiments as particular cases would be very useful.

Example 6.40. Each of the random experiments in Example 6.39
can be thought of as consisting of a series of repeated, random
trials. In all cases, we are interested in the number of trials that
meet a specified criterion. The outcome from each trial either
meets the criterion or it does not; consequently, each trial can be
summarized as resulting in either a success or a failure.

Definition 6.41. A Bernoulli trial involves performing an ex-
periment once and noting whether a particular event A occurs.

The outcome of the Bernoulli trial is said to be

(a) a “success” if A occurs and

(b) a “failure” otherwise.

We may view the outcome of a single Bernoulli trial as the out-
come of a toss of an unfair coin for which the probability of heads
(success) is p = P (A) and the probability of tails (failure) is 1− p.

• The labeling (“success” and “failure”) is not meant to be lit-
eral and sometimes has nothing to do with the everyday mean-
ing of the words. We can just as well use A and B or 0 and
1.

Example 6.42. Examples of Bernoulli trials: Flipping a coin,
deciding to vote for candidate A or candidate B, giving birth to
a boy or girl, buying or not buying a product, being cured or not
being cured, even dying or living are examples of Bernoulli trials.
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• Actions that have multiple outcomes can also be modeled as
Bernoulli trials if the question you are asking can be phrased
in a way that has a yes or no answer, such as “Did the dice
land on the number 4?” or “Is there any ice left on the North
Pole?”

Definition 6.43. (Independent) Bernoulli Trials = a Bernoulli
trial is repeated many times.

(a) It is usually assumed that the trials are independent. This
implies that the outcome from one trial has no effect on the
outcome to be obtained from any other trial.

(b) Furthermore, it is often reasonable to assume that the prob-
ability of a success in each trial is constant.

An outcome of the complete experiment is a sequence of suc-
cesses and failures which can be denoted by a sequence of ones
and zeroes.

Example 6.44. If we toss unfair coin n times, we obtain the
space Ω = {H,T}n consisting of 2n elements of the form (ω1, ω2, . . . , ωn)
where ωi = H or T.

Example 6.45. What is the probability of two failures and three
successes in five Bernoulli trials with success probability p.

We observe that the outcomes with three successes in five trials
are 11100, 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011,
and 00111. We note that the probability of each outcome is a
product of five probabilities, each related to one Bernoulli trial.
In outcomes with three successes, three of the probabilities are p
and the other two are 1 − p. Therefore, each outcome with three
successes has probability (1− p)2p3. There are 10 of them. Hence,
the total probability is 10(1− p)2p3

Exercise 6.46 (F2011). Kakashi and Gai are eternal rivals. Kakashi
is a little stronger than Gai and hence for each time that they fight,
the probability that Kakashi wins is 0.55. In a competition, they
fight n times (where n is odd). We will assume that the results of
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the fights are independent. The one who wins more will win the
competition.

Suppose n = 3, what is the probability that Kakashi wins the
competition.
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